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Abstract
Recently, exclusive lasso has demonstrated its
promising results in selecting discriminative fea-
tures for each class. The sparsity is enforced on
each feature across all the classes via `1,2-norm.
However, the exclusive sparsity of `1,2-norm could
not screen out a large amount of irrelevant and
redundant noise features in high-dimensional data
space, since each feature belongs to at least one
class. Thus, in this paper, we introduce a novel reg-
ularization called “exclusive `2,1”, which is short
for “`2,1 with exclusive lasso”, towards robust flexi-
ble feature selection. The exclusive `2,1 regulariza-
tion is the mix of `2,1-norm and `1,2-norm, which
brings out joint sparsity at inter-group level and ex-
clusive sparsity at intra-group level simultaneously.
An efficient augmented Lagrange multipliers based
optimization algorithm is proposed to iteratively
solve the exclusive `2,1 regularization in a row-wise
fashion. Extensive experiments on twelve bench-
mark datasets demonstrate the effectiveness of the
proposed regularization and the optimization algo-
rithm as compared to state-of-the-arts.

1 Introduction
Feature selection plays an important role in many machine
learning tasks. The main purpose is to remove irrelevant and
redundant noise features in high-dimensional data space. The
selected features will help to reduce the computation cost and
improve the performance on real-world applications.

There are many research works on feature selection over
the years. Generally, feature selection methods can be divided
into three main categories [Guyon and Elisseeff, 2003]: wrap-
per method, filter method, and sparse coding based method
(also known as embedded method). The most representative
wrapper method is support vector machine recursive feature
elimination (SVM-RFE) [Guyon et al., 2002], but the com-
putation cost is extremely high. Contrarily, filter method is
very efficient such as F-statistic [Ding and Peng, 2003], Re-
liefF [Robnik-Šikonja and Kononenko, 2003], minimum re-
dundancy maximum relevance (mRMR) [Peng et al., 2005].

Recently, sparse coding based methods have been widely
investigated, and applied to the study of feature selections.

Least absolute shrinkage and selection operator (LASSO)
[Tibshirani, 1996] is a regression based analysis method that
incurs the sparsity on weights via `1-norm. `1-SVM [Zhu et
al., 2003] and hybrid huberized SVM (HHSVM) [Wang et
al., 2007] are introduced to further improve performance on
two-class problem. LASSO can be derived from probabilistic
selection on ridge regression [Ming et al., 2019].

To solve multi-class problem, researchers search a subset
of features shared by all the classes, also known as multi-task
feature learning (MTFL). In this area, `2,1-norm is the most
widely used regularization developed in [Liu et al., 2009; Nie
et al., 2010; Gui et al., 2017]. In [Quattoni et al., 2009], au-
thors propose `1,∞-norm regularization, which shares same
property of row-sparsity as `2,1-norm. As compared to class-
shared feature selection, exclusive lasso (eLASSO) [Zhou et
al., 2010; Campbell and Allen, 2017] proposes to capture the
negative correlation among different classes via `1,2-norm,
which is first introduced in [Zhao et al., 2009] called com-
posite absolute penalties (CAP). In exclusive feature learning,
discriminative features are selected for each class to provide
certain flexibility. Based on this, Kong et al. of [Kong et al.,
2014] propose to solve the mix of `1-norm and `1,2-norm,
towards minimizing the feature correlation.

Motivated by previous works, in this paper, we introduce
a novel regularization called “exclusive `2,1”, which is short
for “`2,1 with exclusive lasso”. The exclusive `2,1 regulariza-
tion brings out joint sparsity at inter-group level and exclusive
sparsity at intra-group level simultaneously. Thus, the pro-
posed regularization can combine the advantages from differ-
ent sparsity-induced terms, which not only removes irrelevant
noise features (i.e. increase the robustness via `2,1-norm) but
also selects discriminative features for each class (i.e. provide
the flexibility via `1,2-norm).

The main contribution of this paper includes: (i) a novel
“exclusive `2,1” regularization is proposed to conduct robust
flexible feature selection; (ii) we point out some interesting
properties of ‖w‖21 regularization as compared to ‖w‖1 regu-
larization; (iii) a sorting based explicit approach is introduced
to directly solve the `1,2-norm regularization; (iv) an efficient
augmented Lagrange multipliers (ALM) based optimization
algorithm is proposed to iteratively solve the “exclusive `2,1”
regularization in a row-wise fashion; (v) experimental results
on twelve benchmark datasets demonstrate that the proposed
regularization outperforms state-of-the-arts.
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XT =



0.463 0.319 −0.100 0.526 0.535 0.329 0.475
0.296 0.192 0.058 −0.076 0.152 0.313 −0.114
0.196 0.189 0.167 −0.280 0.267 −0.246 0.164
0.330 0.357 0.027 −0.001 0.118 0.058 0.191
0.332 0.035 −0.002 0.280 0.111 −0.043 0.104
−0.022 −0.026 0.770 0.189 0.196 −0.146 −0.121
−0.217 0.028 0.404 0.359 0.335 −0.282 −0.235

0.396 0.297 0.260 0.241 0.193 0.038 0.101


Y=



1 0 0
1 1 0
1 0 1
1 1 1
0 1 0
0 1 1
0 0 1
0 0 1


(1)

W21 =



0.764 0.587 0.378
0.097 0.033 0.082
0.054 0.531 1.003

-0.000 0.000 0.000
0.151 0.030 0.126
0.000 0.000 -0.000
0.000 -0.000 0.000

 W12 =



0.336 0.352 0.000
0.287 0.000 0.358
0.000 0.070 0.758
−0.009 0.173 0.000

0.326 0.000 0.298
0.000 0.000 −0.344
0.333 -0.000 0.000

 Wex21 =



0.192 0.114 0.000
0.132 0.014 0.090
0.000 0.041 0.358
0.000 0.000 0.000
0.133 -0.000 0.137
0.017 0.004 −0.024
0.000 0.000 0.000

 (2)

2 Notations and Definitions
Throughout this paper, scalars, vectors, and matrices are de-
noted as lower-case/capital letters, boldface lower-case let-
ters, and boldface capital letters, respectively.

The i-th element of vector w is represented by wi. Given
a matrix W = (Wij) ∈ Rd×k, the i-th row is represented by
wi (i.e. W = [w1; · · ·; wd]), and the j-th column is repre-
sented by wj (i.e. W = [w1, · · ·,wk]). The Frobenius norm

of W is ‖W‖F =
√∑d

i=1

∑k
j=1W

2
ij . `2,1-norm of W is

‖W‖2,1 =
∑d
i=1

∥∥wi
∥∥
2

=
∑d
i=1

(∑k
j=1W

2
ij

)1/2
. `1,2-norm

of W is ‖W‖21,2 =
∑d
i=1

∥∥wi
∥∥2
1

=
∑d
i=1

(∑k
j=1 |Wij |

)2
.

X = [x1, · · ·,xn] ∈ Rd×n represents n data points, where
xi ∈ Rd, and corresponding class labels are defined as Y =
[y1; · · ·; yn] ∈ Rn×k, where yi ∈ Rk is one-hot vector and
yij = 1 or Yij = 1 means i-th sample belonging to j-th class.

3 Exclusive `2,1 Regularization
Generally, sparse coding based methods can be formulated as
minW {f(W)+λΩ(W)}, where f(W) is the loss function,
Ω(W) is the regularization, and λ is the hyperparameter.

Our work is motivated from the following observations.
The `2,1 norm based feature selection (i.e. f(W)+λ‖W‖2,1)
incurs joint sparsity on rows. A selected non-zero row could
still have some elements with small (in magnitude) numerical
values. Suppose one of them is Wij . This implies i-feature
is not highly correlated with j-th class. Thus `2,1 alone is too
rigid for feature selection.

On the other end, exclusive lasso (i.e. f(W) + λ‖W‖21,2)
selects discriminative features for each class. Here, as λ in-
creases, different elements in squared `1-norm of i-th row wi

are competing with each other to survive. Thus, at least one
element in row wi survive (remaining non-zero). The prob-
lem with exclusive lasso in this context is: all features/rows
will be selected, because for each feature/row i, there will be
some non-zero elements even at large regularization strength.

Towards resolving above main concerns for using `2,1 reg-
ularization alone or using exclusive lasso alone, we propose

to combine them together as a new regularization defined as
Ω(W) = α ‖W‖2,1 + β ‖W‖21,2, which will be called “ex-
clusive `2,1” short for “`2,1 with exclusive lasso”. As a result,
`2,1-norm will increase the robustness to help `1,2-norm, and
`1,2-norm will provide the flexibility to help `2,1-norm.

3.1 An Illustration
The synthetic data X, Y is given in Eq. (1), where d = 7,
n = 8, k = 3. The loss function is f(W) = ‖XTW −Y‖2F .
The learned matrices are given in Eq. (2), where the number
of non-zero elements in W is enforced to 12 for each regu-
larization. The difference is explained as follows:

(i) W21 (`2,1): a feature can be selected by all the classes
(e.g. 3rd row is selected for 1st, 2nd, 3rd classes), or can be
discarded (e.g. 4th row is a zero vector).

(ii) W12 (exclusive lasso): a feature can be selected by
some classes (e.g. 5th row is selected for 1st, 3rd classes; 6th
row is selected only for 3rd class), but can not be discarded
since the matrix has no zero rows.

(iii) Wex21 (the proposed “exclusive `2,1”): a feature can
be selected by all the classes (e.g. 2nd row is selected for 1st,
2nd, 3rd classes), or can be selected by some classes (e.g. 3rd
row is selected for 2nd, 3rd classes), or can be discarded (e.g.
4th row is a zero vector).

4 Understanding the Exclusive Sparsity
4.1 Interesting Property of ‖w‖21 Regularization
In this paper we use ‖w‖21 regularization for flexible feature
selection. Here, we point out some interesting properties of
this regularization.

Consider ‖w‖21 regularization first. We investigate the fol-
lowing simple proximal operator-type problem:

min
w∈Rd

‖w − a‖22+λ‖w‖21. (3)

This is very similar to the standard `1-norm regularization
problem

min
w∈Rd

‖w − a‖22+λ‖w‖1, (4)

which has been thoroughly studied in connection to lasso
[Tibshirani, 1996].
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There exists a widely held belief that optimization prob-
lems Eq. (3) and Eq. (4) behave very similarly and their solu-
tions have identical sparsity pattern.

This belief comes from the following reasoning. Problem
(3) is equivalent to

min
w
‖w − a‖22, s.t. ‖w‖21≤ t (5)

for some parameter t. And problem (4) is equivalent to

min
w
‖w − a‖22, s.t. ‖w‖1≤ t (6)

for some parameter t.
However, this widely held belief is incorrect.
Let w∗`12 be the optimal solution for problem (3). Let w∗`1

be the optimal solution for problem (4). We illustrate their
significant differences in two simple cases.

Case 1 is a simple problem in 2-dim. a = (2, 1). Optimal
solutions are (computed using algorithm explained later1)

λ = 0.1, w∗`1 = (1.95, 0.95), w∗`12 = (1.75, 0.75).
λ = 1, w∗`1 = (1.5, 0.5), w∗`12 = (1,0).
λ = 10, w∗`1 = (0,0), w∗`12 = (0.1818,0).
λ = 1000, w∗`1 = (0,0), w∗`12 = (0.0020,0).

Clearly as λ increases above 1, w∗`1 is all zeros, but w∗`12 has
non-zero component.

Case 2. Consider the dimension is one with a = 1. These
problems can be solved analytically. The solutions are

w∗`1 =

[
1− λ

2

]
+

, w∗`12 =
1

1 + λ
.

Clearly, when λ > 2, w∗`1 = 0, but w∗`12 is never zero not
matter how large λ is.

These two cases show that as λ increases to large values,
w∗`1 will become exact zero for all components, while w∗`12
will become zero for d − 1 components and one component
approaches 1

1+λ asymptotically.

4.2 Solving `1,2-Norm Regularization
In [Zhou et al., 2010], authors illustrate the sparsity of `1,2-
norm from a projection point of view, then solve a min-max
optimization problem. Kong et al of [Kong et al., 2014] use a
re-weight strategy to solve `1,2-norm regularization.

However, both methods are inefficient in high-dimensional
data space. Inspired by non-negative shrinkage thresholding
operator [Cavazza et al., 2018], we introduce a sorting based
explicit approach to solve `1,2-norm regularization. Here, we
focus on its simplified formulation in Eq. (3), which then can
be applied to solve multi-class problem in section 5.
Lemma 1. The optimal solution w∗ of Eq. (3) has the fol-
lowing property of its sign: for i = 1, · · ·, d, (i) if ai = 0,
w∗i = 0; (ii) if ai 6= 0, sign(w∗i ) = sign(ai).
Proof of Lemma 1. If ai = 0, w∗i = 0 can be easily verified.
If ai 6= 0, suppose w∗i = c and sign(c) 6= sign(ai). However,
w∗i = −c gives the lower objective value, since |c| = | − c|
and (c− ai)2 > (−c− ai)2. Thus, sign(w∗i ) = sign(ai). �

1For standard ‖w‖1 regularization, Eq. (4) has the closed-form
solution as w∗`1 = sign(a)� [|a|−λ/2]+. For ‖w‖21 regularization,
we propose a sorting based explicit approach (see Theorem 5) to
solve Eq. (3), and the optimal solution w∗`12 is given in Eq. (10).

Lemma 2. The optimal solution w∗ of Eq. (3) has the fol-
lowing property of its magnitude: for i = 1, · · ·, d,

|w∗i | − |ai|+ λ‖w∗‖1= 0, if |w∗i | > 0, (7)
−|ai|+ λ‖w∗‖1ξi = 0, ξi ∈ [0, 1], if |w∗i | = 0, (8)

where ξi is the subgradient of f(x) = |x|, x ≥ 0 at x = 0.
Proof of Lemma 2. Eq. (3) can be rewritten equivalently as

min
w∈Rd

J(w) =
d∑
i=1

(|wi| − |ai|)2 + λ

(
d∑
i=1

|wi|

)2

, (9)

since [sign(wi)]
2 = [sign(ai)]

2 = 1, according to Lemma 1.
Taking derivative of J(w) in Eq. (9) w.r.t |wi| and setting

∂J(w)
∂|wi| = 0, we will have the same first-order optimality con-

ditions defined in Eq. (7) and Eq. (8). �

Proposition 3. As λ increases to large values, at least one
element wi in w will survive (i.e. |wi| > 0), given a 6= 0.
Otherwise, w = 0 will lead to a = 0 according to Eq. (8).
Definition 4. Given a = (a1, · · ·, ad) ∈ Rd, S denotes a d-
dimensional vector with Si 6=Sj(i 6=j),

⋃d
i=1Si={1, · · ·, d},

and each Si represents the indexes of a descending order with
respect to a, such as |aS1 | ≥ |aS2 | ≥ · · · ≥ |aSd |.
Theorem 5. The optimal solution of Eq. (3) is given by

w∗ = sign(a)�
[
|a| − λτ

1 + λτ
µτ

]
+

, (10)

where � is the Hadamard product, i.e. [x � y]i = xiyi,
[·]+ = max(·, 0), µτ = 1

τ

∑τ
i=1 |aSi |, and τ is the largest

coordinate of S satisfying |aSτ | − λτ
1+λτ µτ > 0.

Proof of Theorem 5. Suppose that w∗S1 , w∗S2 , · · · , w∗Sτ are
non-zeros. By adding Eq. (7) for S1, S2, · · · , Sτ (i.e. the first
τ indexes saved in S), we have

τ∑
i=1

|w∗Si | −
τ∑
i=1

|aSi |+ λτ‖w∗‖1= 0, (11)

which can be equivalently rewritten as ‖w∗‖1 = τ
1+λτ µτ ,

where µτ = 1
τ

∑τ
i=1 |aSi |. Thus, Lemma 2 and Eq. (11) give

the optimal solution w∗ w.r.t its magnitude as follows

|w∗Si | = |aSi | −
λτ

1 + λτ
µτ > 0, for i = 1, · · ·, τ, (12)

|w∗Si | = 0, for i = τ+1, · · ·, d, (13)

which is equivalent to the definition of w∗ in Eq. (10), since
w∗j = sign(w∗j )|w∗j | = sign(aj)|w∗j | for j = S1, · · ·,Sτ , and
w∗j = 0, |aj | − λτ

1+λτ µτ < 0 for j = Sτ+1, · · ·,Sd. �

Theorem 6. When τ is the largest coordinate of S satisfying
|aSτ | − λτ

1+λτ µτ > 0, the solution w∗ defined in Eq. (10)
achieves the global minimum of J(w).
Proof of Theorem 6. If τ = d, we have |w∗Si | > 0 for
i = 1, · · ·, d, and each w∗Si given by Eq. (12) satisfies optimal
condition Eq. (7). Thus, w∗ is the global minimizer of J(w).

If τ < d, we have |w∗Si | > 0 for i = 1, · · ·, τ , and |w∗Si | =
0 for i = τ+1, · · ·, d. Since τ is the largest coordinate of S
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Algorithm 1 Search the largest coordinate τ of S .
Input: a ∈ Rd, λ, S .
Output: τ , µτ .

1: Initialize: τ = d, µτ = 1
d

∑d
i=1 |aSi |.

2: while τ > 1 and |aSτ | − λτ
1+λτ µτ < 0 do

3: µτ = τ
τ−1µτ −

1
τ−1 |aSτ |.

4: τ = τ − 1.
5: end while
6: return τ , µτ .

satisfying |aSτ |− λτ
1+λτ µτ > 0, for (τ+1)-th coordinate of S ,

we have |aSτ+1
|− λ(τ+1)

1+λ(τ+1)µτ+1 < 0, which can be rewritten
equivalently as |aSτ+1

|− λτ
1+λτ µτ < 0, i.e. |aSτ+1

|<λ‖w∗‖1.
This implies w∗Sτ+1

satisfies Eq. (8). For i = τ+2, · · ·, d, w∗Si
satisfies Eq. (8), since |aSi | ≤ |aSτ+1

| < λ‖w∗‖1. Besides,
w∗Si satisfies Eq. (7) for i = 1, · · ·, τ . Thus, w∗ is the global
minimizer of J(w), which completes the proof. �

Since w∗ depends on τ , µτ , here we introduce an efficient
algorithm (given in Algorithm 1) to search the largest coordi-
nate τ of S satisfying |aSτ | − λτ

1+λτ µτ > 0 in linear time.

5 Optimization Algorithm
To select robust and flexible features, we are interested in the
following optimization problem

min
W

Jex21(W) =
∥∥XTW−Y

∥∥2
F

+ α‖W‖2,1 + β‖W‖21,2
(14)

where the least square loss is penalized by the proposed “ex-
clusive `2,1” regularization, and α, β are hyperparameters.

First, we add an auxiliary variable Z to make the optimiza-
tion separable between `2,1-norm and `1,2-norm. Thus, orig-
inal problem (14) becomes

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2
s.t. Z = W.

(15)

Then, augmented Lagrange multipliers (ALM) method is
applied to enforce the constraint in problem (15) explicitly

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2
+ 〈Λ,Z−W〉+ ν

2 ‖Z−W‖2F
(16)

where 〈·, ·〉 is the inner product, i.e. 〈A,B〉 =
∑
ij AijBij ,

Λ is the Lagrange multiplier, and ν is the penalty parameter.
Problem (16) can be rewritten equivalently as

min
W,Z

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1 + β‖Z‖21,2
+ ν

2 ‖Z−W + Λ/ν‖2F .
(17)

Thus, our task is to solve the variables Z, W and update the
parameters Λ, ν.

5.1 Solving for Z
Firstly, we solve Z while fixing W. Then, problem (17) w.r.t
Z becomes

Zt+1 = arg min
Z

νt
2
‖Z−Wt + Λt/νt‖2F + β‖Z‖21,2 .

(18)

Since the optimizations of each row zi in Z are separable,
we can minimize problem (18) in a row-wise fashion. Thus,
the optimization of Eq. (18) w.r.t zi becomes

zit+1 = arg min
zi

νt
2

∥∥zi − e
∥∥2
2

+ β
∥∥zi∥∥2

1
, (19)

where i = 1, · · ·, d is the feature/row index, e = wi
t −λit/νt,

wi
t is the i-th row of Wt, and λit is the i-th row of Λt.
Using Theorem 5, the optimal solution of Eq. (19) is

zit+1 =sign(e)�
[
|e|− 2βτ

νt + 2βτ
µτ

]
+

(20)

where τ , µτ are computed using Algorithm 1, given the input
(e, 2β/νt, S), and S is a k-dimensional vector representing
the indexes of descending order |eS1 | ≥ |eS2 | ≥ · · · ≥ |eSk |.

5.2 Solving for W
Secondly, we solve W while fixing Z. Then, problem (17)
w.r.t W becomes

Wt+1 = arg min
W

∥∥XTW−Y
∥∥2
F

+ α‖W‖2,1
+ νt

2 ‖Zt+1 −W + Λt/νt‖2F .
(21)

Since `2,1-norm is defined on each row wi in W, here we can
solve W in the similar way as Z.

To solve W in a row-wise fashion, we decompose the least
square loss w.r.t wi as follows∥∥XTW −Y

∥∥2
F

=

∥∥∥∥ d∑
i=1

(xi)Twi −Y

∥∥∥∥2
F

=
∥∥(xi)Twi −Y−i

∥∥2
F

= a‖wi‖22−2wibT + c

(22)

where Y−i = Y −
∑
j 6=i(x

j)Twj , a = ‖xi‖22, b = xiY−i,
and c = Tr((Y−i)TY−i).

Thus, the optimization of Eq. (21) w.r.t wi becomes

wi
t+1 = arg min

wi

2a+ νt
2

∥∥wi − d
∥∥2
2

+ α
∥∥wi

∥∥
2

(23)

where i = 1, · · ·, d is the feature/row index, d = 1
2a+νt

(2b +

νtz
i
t+1 + λit), zit+1 is the i-th row of Zt+1, and λit is the i-th

row of Λt.
The optimal solution of Eq. (23) is given by2

wi
t+1 =

[
1− α

(2a+ νt)‖d‖2

]
+

d, (24)

where [·]+ = max(·, 0).

5.3 Updating Parameters
Finally, we update parameters Λ, ν at the end of t-th iteration
as the following

Λt+1 = Λt + νt(Zt+1 −Wt+1), (25)
νt+1 = ρνt (26)

where ρ > 1 is a constant.
2For standard ‖w‖2 regularization, the optimization problem

minw {‖w − a‖22+λ‖w‖2} has the closed-form solution as w∗`2 =

max(1− λ
2‖a‖2

, 0)a.
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Algorithm 2 ALM based optimization algorithm for solving
the “exclusive `2,1” regularization in problem (14).

Input: data matrix X ∈ Rd×n, class labels Y ∈ Rn×k,
hyperparameters α, β.
Output: weight matrix W ∈ Rd×k.

1: Initialize: t = 0, νt = 1/‖X‖F , ρ = 1.1, ε1 = 1e−8,
ε2 = 1e−5, Λt = 0, random initialization weights Wt.

2: repeat
3: for i ∈ {1, · · · , d} do
4: Compute e via Eq. (19).
5: Compute the descending order S of |e1|, · · ·, |ek|.
6: Compute τ , µτ via Algorithm 1 given (e,2β/νt,S).
7: Compute zit+1 via Eq. (20).
8: end for
9: for i ∈ {1, · · · , d} do

10: Compute Y−i, a, b via Eq. (22).
11: Compute d via Eq. (23).
12: Compute wi

t+1 via Eq. (24).
13: end for
14: Update Λt+1 via Eq. (25).
15: Update νt+1 via Eq. (26).
16: Set t = t+ 1.
17: until convergence condition is satisfied:∣∣Jex21(Wt+1)− Jex21(Wt)

∣∣/Jex21(Wt) ≤ ε1,∥∥Zt+1 −Wt+1
∥∥
∞ ≤ ε2.

18: return the optimal solution: W∗.

5.4 The Summary of Optimization Algorithm
The complete framework of the proposed augmented La-
grange multipliers (ALM) based optimization algorithm is
summarized in Algorithm 2.

6 Experiments
6.1 Benchmark Datasets
Experiments on twelve benchmark datasets are conducted
to evaluate the performance of feature selection methods on
classification. Among those benchmarks, there are 4 image
datasets: MNIST3 [Lecun et al., 1998], Yale4, YaleB5 , PIE
[Sim et al., 2002]; 1 spoken letter recognition dataset: ISO-
LET6; 5 bio-microarray datasets: Carcinomas [Yang et al.,
2006], Lung [Bhattacharjee et al., 2001], Glioma [Nutt et
al., 2003], TOX6, Tumor-14 [Ramaswamy et al., 2001]; and
2 text datasets: CNAE-9 [Ciarelli and Oliveira, 2009], 20-
Newsgroups7. The details of all the benchmark datasets is
summarized in Table 1.

6.2 Evaluation Metrics
In subsequent experiments, the proposed exclusive `2,1 regu-
larization is compared to five state-of-the-arts, including three

3In MNIST, 100 images are randomly selected out of each digit.
4http://vision.ucsd.edu/content/yale-face-database
5http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
6http://featureselection.asu.edu/datasets.php
7http://qwone.com/∼jason/20Newsgroups/ In 20-Newsgroups,

100 documents are randomly selected out of each newsgroup, and
F-statistic method is used to prescreen 5,000 keywords.

Dataset k n d
MNIST 10 1000 784
Yale 15 165 1024
YaleB 38 2414 1024
PIE 10 210 2420
ISOLET 26 1560 617
Carcinomas 11 174 9182
Lung 5 203 3312
Glioma 4 50 4434
TOX 4 171 5748
Tumor-14 14 190 16063
CNAE-9 9 1080 856
20-Newsgroups 20 2000 5000

Table 1: The summary description of twelve benchmark datasets. k,
n, d denote the number of classes, the number of data instances, the
number of features for each dataset, respectively.

filter methods: F-statistic [Ding and Peng, 2003], ReliefF
[Robnik-Šikonja and Kononenko, 2003], minimum redun-
dancy maximum relevance (mRMR) [Peng et al., 2005], and
two sparse coding based methods: multi-task feature learning
via `2,1-norm (`2,1) [Liu et al., 2009; Nie et al., 2010; Gui
et al., 2017], exclusive Lasso (eLASSO) [Zhou et al., 2010;
Campbell and Allen, 2017].

To evaluate the performance on classification, 5-fold cross-
validation accuracy with SVM as classifier are computed on
average. LIBSVM [Chang and Lin, 2011] is used as the prac-
tical implementation of SVM, where kernel is set as linear
and parameter C is set as 1 for all the experiments.

When training different models, hyperparameters are ad-
justed to enforce the same level of sparsity on learned weight
matrices. Then we select the top features with largest weights
for each class. For testing, an SVM classifier is built for each
class separately, by using the selected features. The final clas-
sification result is obtained via majority voting.

6.3 Analysis of the Results
Convergence Study
Convergence of our proposed ALM based optimization algo-
rithm is shown in Fig. 1, where x-axis and y-axis denote the
number of iterations and the objective value respectively.

We use the same hyperparameter setting, i.e. α=1, β=1,
for four benchmark datasets. As it can be seen in Fig. 1, the
proposed optimization algorithm takes around 100∼150 iter-
ations to converge. This shows our ALM based optimization
algorithm is efficient and converge fast in real applications.

Classification Results Comparison
Experimental results of our proposed exclusive `2,1 regular-
ization versus five state-of-the-arts are shown in Fig. 2, where
x-axis denotes the number of selected features ranging from
10 to 80, and y-axis denotes the average of 5-fold cross-
validation classification accuracy.

In general, sparse coding based methods (`2,1, eLASSO,
Ours) achieve better performances than filter methods (F-
Statistic, ReliefF, mRMR). Among filter methods, mRMR has
relatively higher classification accuracy, since it takes con-
sideration of minimizing the correlation between features.
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Figure 1: Convergence analysis of our proposed optimization algorithm on four benchmark datasets.
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Figure 2: 5-fold cross-validation accuracy of our proposed feature selection method versus state-of-the-arts on twelve benchmark datasets.

eLASSO performs well in image and spoken letter recognition
datasets. However, its performance has a great degradation
in bio-microarray and text datasets, since `1,2-norm cannot
remove a large amount of irrelevant noise features in high-
dimensional data space. `2,1 has a very stable performance
in all datasets via selecting class-shared features. In some
cases, `2,1 performs even close to our method around top
60∼80 features. Overall, our method obtains the best classi-
fication result on twelve benchmark datasets. Additionally, in
the small number of selected features setting, e.g. top 10∼20,
our method has an overwhelming advantage over other meth-
ods, with around 5%∼10% improvement on accuracy.

7 Conclusion
In this paper, we introduce a novel “exclusive `2,1” regular-
ization for robust flexible feature selection. Besides, we point

out some interesting property of ‖w‖21 regularization, which
can be solved directly by a sorting based explicit approach.
Then, an efficient augmented Lagrange multipliers based op-
timization algorithm is proposed to iteratively solve the “ex-
clusive `2,1” regularization in a row-wise fashion. Extensive
experiments validate the effectiveness of the proposed robust
flexible feature selection, which outperforms state-of-the-arts
on twelve benchmark datasets.
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